
Final report

Christian Luijten

March 22, 2007

Vökvar, m.pl. liquids, fluids

Christian Luijten
Visualization (2IV30)
Department of Mathematics & Computer Science
Technische Universiteit Eindhoven

1 INTRODUCTION 1

1 Introduction

This document describes the design process and usage of the Vökvar appli-
cation as result of assignment 6 of the course of Visualization (2IV30) at the
Technical University of Eindhoven.

The text of the assignment:

In this assignment, you must construct a software tool for visualiz-
ing a time dependent two dimensional vector field that represents
the flow of a fluid. This vector field is produced by a numerical
simulation library called FFTW. Along with the flow field, FFTW
simulates the diffusion and advection of matter in time. For an easy
start, we provide a simple program that uses the FFTW to simu-
late and visualize a fluid flow. Our visualization is limited to simple
hedgehogs colored by a blue-to-red colormap (see Course Material
for details on these two algorithms). The simulation of the flow is
driven interactively by the user, via mouse clicks in the window. The
clicks inject local changes (vortices, matter) in the flow. The above
software, written in C, can be downloaded from: http://www.win.
tue.nl/∼alext/COURSES/INFO VIS/SOFTWARE/Smoke.zip.

The assignment asks you to implement at least two of the following
visualization techniques:

• Streamlines: show the flow by a number of instantaneous stream-
lines. You should decide yourself about where to start (and
stop) the streamlines, how long the streamlines should be, how
many to draw, how to draw them, etc. Some of these parame-
ters may be exposed to the end user via a user interface. Others
may be automatically set by the program itself.

• Isolines: show the flow by displaying the isolines of the matter
density. You should decide upon the number of isolines, dis-
tance between isolines, and way of drawing them, just as in the
case of streamlines.

• Height plots: show the flow by displaying a height plot (3D
elevation graph) of the matter density. You should decide upon
the viewing angle, height mapping, shading, and coloring of the
3D plot.

For this assignment, students can work in groups of two persons.
The deliverable should contain:

• a report containing a description of the implemented meth-
ods, the choices made during the implementation, the problems
found, limitations of the proposed solution, and a simple ‘user
manual’ of the implemented software, in total 5–10 pages.

1 INTRODUCTION 2

• the software: source code as well as running executable.

Since the software we provide as a starting point is written in C under
MS Windows (with Visual C++), we recommend you to develop
your solution in the above setting. However, other implementations
(Delphi, Java, Linux) are allowed too, as long as all deliverables are
present. The deadline of this assignment is as for the other ones
(before the spring term).

It was decided to implement streamlines and isolines, and to write the software
in C under Mac OS X and Linux.

The final code compiles under Mac OS X and Linux and should in theory also
compile under Windows given the correct build options.

1.1 The name: Vökvar

The author is fascinated by Iceland, the language and culture and recentrly
lived in Iceland for four months during a traineeship. Vökvar is the icelandic
word for fluids (vökvi being the singular).

2 PROBLEMS 3

2 Problems

This section identifies the problems to be solved when implementing streamlines
and isolines in Vökvar.

2.1 Streamlines

To draw a perfect streamline, one has to calculate an integral for an absent func-
tion. In other words, this is impossible. The streamline can be approximated
however by use of numerical integration.

There are various methods for doing this, Euler’s and Runge-Kutta’s techniques
being the most famous. While Euler’s method is known to be not very accurate
when compared to Runge-Kutta’s, the choice was put on the former.

2.2 Isolines

Isolines have the problem that it is impossible to determine the isovalues so that
the whole window is evenly filled with lines.

There are three ways of setting those values:

• By fixed value, simply a list of predefined “clever” values, independent of
the dataset.

• By fixed number, taking the current maximal and minimal value of the
dataset, dividing it into a set number of isovalues.

• By fixed points, taking a point in the dataset and determining the isoline
running through it.

All three methods are implemented using a simple version of the conrec algo-
rithm by Paul Bourke which was published in the Byte magazine issue of July
19871.

1http://local.wasp.uwa.edu.au/∼pbourke/papers/conrec/

3 DESIGN 4

3 Design

The Vökvar component design is pretty straightforward. There are two main
components; the simulation and the visualization.

3.1 Simulation

The basic functionality of this part is given by the fluids-example.c file. A
data structure called Simulation is created to hold the information together.
The listings in this section are taken from the file simulation.h.

12 /∗∗
∗ Public datastructures
∗∗/

typedef struct {
17 int dimension; /∗ Size of the data set ∗/

fftw real ∗u, ∗v; /∗ (u,v) = velocity field ∗/
fftw real ∗u0, ∗v0;
fftw real ∗u u0, ∗u v0; /∗ User−induced forces ∗/

22 fftw real ∗rho, ∗rho0; /∗ Smoke density ∗/

rfftwnd plan plan rc, plan cr; /∗ FFT plans ∗/
} Simulation;

27 typedef struct {
float max; /∗ maximal value in the simulation data set ∗/
float min; /∗ minimal value in the simulation data set ∗/
float mean; /∗ mean value in the simulation data set ∗/

} Simulation statistics;
32

/∗∗
∗ Public functions
∗∗/

37 /∗ Creates a new simulation ∗/
Simulation ∗new simulation(int dimension);
/∗ Delete the simulation ∗/
void simulation destroy(Simulation ∗s);

42 /∗ Set the simulation forces ∗/
void simulation set forces(Simulation ∗s);
/∗ Calculates new values ∗/
void simulation stable solve(Simulation ∗s,

3 DESIGN 5

fftw real viscosity, fftw real dt);
47 /∗ Lets matter diffuse ∗/

void simulation diffuse matter(Simulation ∗s, fftw real dt);
/∗ Returns the interpolated speed ∗/
Vector ∗simulation interpolate speed(Simulation ∗s, Vector ∗v);
/∗ Returns the interpolated density value ∗/

52 float ∗simulation interpolate density(Simulation ∗s, Vector ∗v);
/∗ Returns the density value at specified location ∗/
float simulation value(Simulation ∗s, int x, int y);
/∗ Returns the maximal density value in the data set ∗/
float simulation maximal value(Simulation ∗s);

57 /∗ Returns a statistical information about the data set ∗/
Simulation statistics ∗simulation statistics(Simulation ∗s);

3.2 Visualization

/∗∗
20 ∗ Public datastructures

∗∗/

/∗ Visualization type selector ∗/
typedef enum {

25 VIZ NONE = 0,
VIZ SMOKE = 1,
VIZ VECTORS = 2,
VIZ STREAMLINES = 4,
VIZ ISOLINES = 8

30 } Visualization draw;

/∗ Isoline type selector ∗/
typedef enum {

VIZ ISO BY NUM = 0,
35 VIZ ISO BY VALUE,

VIZ ISO BY POINT,
VIZ ISO COUNT

} Visualization isolines type;

40 /∗ Visualization datastructure ∗/
typedef struct {

int width, oldwidth; /∗ Window width ∗/
int height, oldheight; /∗ Window height ∗/

45 int frozen; /∗ Simulation and visualization frozen? ∗/
int fullscreen; /∗ Window fullscreen? ∗/
int main window; /∗ GL window identifier ∗/

3 DESIGN 6

float viscosity; /∗ Fluid viscosity value ∗/
50 float timestep; /∗ Time assumed between two calculaions ∗/

Visualization draw draw;
Vector ∗ratio; /∗ Ratio between data set coordinates and GL coordinates ∗/

55 int scalar coloring; /∗ Palette selection ∗/

int color dir; /∗ Color depending on direction of vectors? ∗/
float vector scale; /∗ Scale factor for vectors vis. ∗/

60 Visualization isolines type isolines type;
void ∗isolines datapoints; /∗ Storage for isolines module ∗/
int isolines number; /∗ Number of isolines to draw ∗/

Simulation ∗simulation;
65 } Visualization;

/∗∗
∗ Public functions

70 ∗∗/

/∗ Creates a new visualization ∗/
Visualization ∗new visualization(int argc, char ∗∗argv,

Simulation ∗simulation, int width, int height);
75 /∗ Deletes a visualization ∗/

void visualization destroy(Visualization ∗v);

/∗ Starts the visualization ∗/
void visualization start(Visualization ∗v);

80 /∗ Stops the visualization ∗/
void visualization stop(Visualization ∗v);

/∗ Draws one frame in the visualization ∗/
void visualization draw field(Visualization ∗v);

85 /∗ Sets the current color to the corresponding value in the palette currently
∗ in use ∗/

void visualization set color palette(Visualization ∗v, float value);

3.2.1 Smoke

This was an existing visualization in the example and is integrated into Vökvar.

void smoke draw(Visualization ∗v);

3 DESIGN 7

3.2.2 Vectors

This was an existing visualization in the example and is integrated into Vökvar.

void vectors draw(Visualization ∗v);

3.2.3 Streamlines

6 void streamlines draw(Visualization ∗v);

A streamline is generated by taking a point in the space and applying a function
to it to get the next point it will be after some set time step.

Vökvar uses Euler’s method, which means the function is of the form:

xt+∆ = xt + vxt ×∆

where xt is the location of the particle to be traced at time t, vxt
is the velocity

of that particle at that moment. ∆ is the timestep size.

3.2.4 Isolines

The three methods of drawing imply three functions to call.

void isolines draw(Visualization ∗v);
void isolines draw by number(Visualization ∗v, int num);
void isolines draw by value(Visualization ∗v, float ∗values, int num);

9 void isolines draw by point(Visualization ∗v, Vector ∗∗points, int num);

The CONREC algorithm is explained extensively in the paper by Paul Bourke.
It uses the observation that in a triangle, an isoline can only cut the triangle in
two if there is at least 1 point under the isoplane and at least one above it.

Then by interpolation, a line is drawn over the triangle. Doing this with every
triangle of adjacent data points, the whole plane is filled and thus isolines are
constructed.

4 USAGE 8

4 Usage

Upon startup, Vökvar is a black, square window. Use the mouse to click
anywhere in the window and drag a little. Hereby, you are injecting fluid which
will distribute and dissolve in the simulation.

To control the visualization, the keyboard is used. These are the commands:

• 1: Switches the “smoke” on and off

• 2: Switches the speed vectors on and off

• 3: Switches the streamlines on and off

• 4: Switches the isolines on and off

• p: Switches between palette (rainbow, less coloured rainbow, grayscales)

• o: Switches between isolines method (by value, by number, by point)

• a: Temporarily freeze simulation and animation

• f: Switches to and from fullscreen view

• t/T: Changes timestep

• s/S: Changes scale of vectors and streamlines

• v/V: Changes viscosity

• i/I: Changes number of isolines

• q: Quits Vökvar

4.1 Compilation

If you want to compile Vökvar yourself, you need to have the OpenGL and
FFTW2 libraries and headers installed.

In Debian, this is as simple as running the following the command:

aptitude install fftw3-dev freeglut3-dev

In Mac OS X, fftw is available from Fink3.

fink install fftw3

The OpenGL libraries should be installed with the system (otherwise most of
the graphical user interface wouldn’t work).

After you installed the libraries, under Linux run make -f Makefile.linux,
under Mac OS X run make -f Makefile.macosx.

There should be a binary called vokvar, run it.
2http://www.fftw.org/
3http://fink.sourceforge.net/

5 CONCLUSION 9

5 Conclusion

A working software tool was implemented, with streamlines and isolines. It was
tested to compile and run properly on both Debian GNU/Linux and Mac OS X.

The initial source code needed some cleanup first, when it was clear how it
worked, the design process started and resulted in the separate modules as they
are now. The example code wasn’t very clean and extensible, so this caused
some head breakage at first. Especially because of unfamiliarity with OpenGL
and FFTW.

5.1 Limitations

Some ideas that have come up during development, but which were dismissed
because of scope or time concerns.

Two visualizations cannot both have a different palettes at the same time. This
would be perfectly possible to implement, but usually one only uses one visual-
ization at a time, so this won’t be a big issue.

Free placement of streamlines would have been cool, would however also create
the need for an interface to the OpenGL drag handler to react on mouse events.

