
Essay Concepts of Programming Languages

Delegates

Christian Luijten (496505) & Paul van Tilburg (459098)

2nd April 2004

Contents

1 Introduction 2

2 What are delegates? 2

2.1 Type-safety . 2

2.2 Object-oriented reference . 2

2.3 Delegation pattern . 3

2.4 Examples . 3

3 Delegate alternatives 3

3.1 The function pointer . 4

3.2 Java inner classes . 4

3.3 Dynamic bound delegates . 5

4 Advantages & disadvantages of delegates 6

4.1 Disadvantages . 6

4.2 Advantages . 7

4.3 Evaluation . 7

5 Delegates in other languages 7

5.1 Delegates in C# . 7

5.2 Delegates in Visual Basic .NET . 7

6 Conclusion 9

6.1 Readability . 9

6.2 Writability . 9

6.3 Reliability . 9

References 10

1 INTRODUCTION 2

1 Introduction

The delegate is a language construction first introduced by Microsoft in their imple-
mentation of Java, Visual J++ 6.0. When it was introduced, it brought up many
discussions whether or not the delegate is a good and clean construct in program-
ming languages, especially in Java. We will not go into these discussions thoroughly
and leave the political issues as they are.

This document will explain what the delegate construct exactly is in the next para-
graph. After that some alternatives for delegates are presented, followed by a short
discussion of the advantages and disadvantages. As in the past years the delegate
came to appear in more languages, an overview will be presented afterwards.

2 What are delegates?

A common way to look at delegates is to see them as function pointers (see also
Section 3.1), but they are actually much more than that. The delegate introduces
a type-safe, object-oriented reference to methods. These two ‘new’ aspects are
explained in the following two parapgrahs.

2.1 Type-safety

Delegates are type-safe. This means that the compiler and in this case also the vir-
tual machine will check and enforce type-safety when delegates are used. Since the
delegate refers to a method, this method must match the delegate in the following
ways:

1. The method must have the same number and type of arguments,

2. the method must have the same return type, and

3. the method must throw the same exceptions.

2.2 Object-oriented reference

Because delegates are objects too, they fit nicely into the object oriented languages
as Java and C#. Delegate declarations are compiled into classes and delegate
instances are just as any other instance.

The delegate instances encapsulate methods and thus function as references which
can be invoked. In some languages (C# for example, see Section 5.1) there are two
types of delegates:

bound method reference means that the method pointer that is encapsulated
is bound to an instance of the object.

unbound method reference means that the method pointer is a static one. For
example a pointer to a (static) class method1.

1This is more like normal function pointers.

3 DELEGATE ALTERNATIVES 3

2.3 Delegation pattern

The name delegate refers to the often used concept in object oriented programming:
delegation. It means that a task is handled over from one object to another.

This is related to the delegation pattern [WKP-DLGPAT] which is an technique
where an object outwardly expresses certain behaviour but actually delegates it
and the responsibility to another object.

This pattern is often occurs in event-handling. Logically delegates are very easy
to use here. Compontents can have a list of delegates, thus objects encapsulating
method references which need to be called when an event occurs. This is in an
example in the next section (see Subsection 2.4):

2.4 Examples

This section illustrates the use of delegates. Both examples are written in Microsoft
Visual J++ 6.0 and are derived from the J++ tutorial [MSDN-DLGTUT]. The
first example shows the use of a delegate in the classic generic sorting setting2.

Listing 1: Examples of delegate use in Micosoft Visual J++

// Define Comparer class that extends Delegate class.

delegate int Comparer(Object a , Object b) ;

// Create function to match Comparer delegate signature.

int stringCompare(Object a , Object b) {
String x = (String) a ;
String y = (String) b ;
return x . compareTo (y) ;

}

void test () {
// Create & instantiate delegate with

// defined stringCompare function.

Comparer c = new Comparer(this . stringCompare) ;
String [] stringArr = . . .

// Call sorter function with array and delegate

// which will be called by c.invoke(elem1, elem2)

// for elements in stringArr.

Sorter . sort (stringArr , c) ;

. . .
}

The next example uses the delegate in a more straightforward way by just encap-
sulating the method reference to an event handler.

3 Delegate alternatives

Although the delegation pattern (Section 2.3) is common to programming, the
delegate construction is quite new. Clearly because of this, older languages must

2Often constructed by a generate sorting routine which determines the order of the elements

to be sorted by a seperate function.

3 DELEGATE ALTERNATIVES 4

Listing 2: Use of delegates for event handling

// Define MouseEventHandler class that extends Delegate class.

multicast delegate void MouseEventHandler(Object sender ,
MouseEvent e) ;

// Create a button on the form.

Button myButton = new Button () ;

// Function that can handle an mouse event.

void myButton mouseMove(Object sender , MouseEvent e) {
p(”mouse moved to ” + e . x + ” ,” + e . y) ;

}

void initForm () {
// Couple the myButton_mouseMove method as event

// handler by creating delegate MouseEventHandler.

MouseEventHandler me =
new MouseEventHandler(this .myButton mouseMove) ;

// Add the delegate (thus method reference) as addOnMouseMove

// event handler.

myButton.addOnMouseMove(me) ;

. . .
}

have alternatives and some new language choose not to implement it this way (as
discussed in Section 4). Some of the alternatives are discussed in the following
subsections.

3.1 The function pointer

The most straightforward used to delegate functionality and control in older lan-
guages is the use of the function pointer or reference3. The function pointer, avail-
able in for example C, Pascal, Modula, etc., refers to a function at other position
in the code. This binding is static and can be checked compile-time for errors. Al-
though type-safety can be ensured, the pointer brings along all the disadvantages
of pointers.

3.2 Java inner classes

In Java it is possible to define classes within classes, which are called inner classes.
These inner classes can be used to define methods with functionality to which for
example handling an event can be delegated. This is illustrated in the following
listing, which is an alternative implementation of the example given in Listing 2
(page 4).

3From the perspective of the delegate the reference is just a smart pointer and does not ensure

complete type-safety and object-orientation as the delegate does.

3 DELEGATE ALTERNATIVES 5

Listing 3: Event handling with inner class instead of delegate

// Create a button on the applet.

JButton myJButton = new JButton () ;

// Inner class implementing the MouseMotionListener interface

// to handle mouse motion events.

class MyMouseMotionListener implements MouseMotionListener {
public void mouseMoved(MouseEvent e) {

println (”mouse moved to ” + e . x + ” ,” , + e . y) ;
}

}

public void i n i t () {
// Create instance of the MyMouseMotionListener

// class for handling motion.

MyMouseMotionListener ml = new MyMouseMotionListener () ;

// Add the MyMouseMotionListener object to the list

// of object that should get and handle the event.

JButton . addMouseMotionListener (m;) ;

. . .

}

3.3 Dynamic bound delegates

Scripting languages often provide means of delegation. Since most scripting lan-
guages aren’t strongly typed and most of the objects are dynamically bound, the
delegate alternatives are dynamically bound too.

Although there are numerous scripting languages and delegation constructions therein,
two examples of the same sort will be presented: the lambda construction in Python
and the Proc block/iterator in Ruby. Both examples will increment elements of an
array with 1.

Python features a construction to create a generic function which can be passed as
an argument. This generic function is defined by the lambda construction analogue
to the use in lambda calculus4.

Listing 4: Incrementing array elements using the lambda construction in Python

Create example array of elements 10, 20, 30

ar = [10 , 20 , 30]

Define generic function which takes one argument and

increments it.

inc = lambda x : x + 1

Apply the ’inc’ lambda-function to all elements of array ar.

sar = map(inc , ar)

4See also http://en2.wikipedia.org/wiki/Lambda_calculus for more information

4 ADVANTAGES & DISADVANTAGES OF DELEGATES 6

Ruby allows the programmer to create an object of a block of code, which for
example can be passed to an iterator function.

Listing 5: Increment array elements using Proc object in Ruby

Create example array of elements 10, 20, 30

ar = [10 , 20 , 30]

Create Proc object from a code block which takes one argument

and returns it increment.

inc = Proc .new do | x | x + 1 end

Pass Proc object code as code block to map iterator function.

sar = ar .map(&inc)

As in Ruby everything is an object, the code block (a Proc object) referenced by
inc is an object too. When a Proc object is used, the arity is checked. This makes
the Ruby Proc object come very close to a delegate construction except that here
the code is encapsulated instead of the method reference.

4 Advantages & disadvantages of delegates

When Microsoft introduced delegates in Visual J++, Sun Microsystems objected
to implementing them in Java.

Sun states that “bound method references are unnecessary and detrimental to
the language” in their white paper About Microsoft’s ‘delegates’[SUN-DLG]. Mi-
crosoft responds in the article The Truth About Delegates[MSDN-DLG]: “WFC5’s
delegate-based event model results in more concise, more readable, and conceptually
simpler source code than the JavaBeans’ interface-based event model.”.

4.1 Disadvantages

Sun Microsystems decided already in 1996 not to include delegates in the Java lan-
guage. They did this after careful consideration and with consultation of Borland,
who used bound method references in the Delphi Object Pascal language.

Delegates are according to Sun:

• Unnecessary and a detriment to the language, because of the already existing
inner class (see Section 3.2), about which Sun says they “provide equal or
superior functionality”.

• Harming the simplicity of the Java language; they cause irregularity in the
syntax and scoping rules and affect the object-orientedness of the language.

• Adding complexity to the language. The type system must include an “en-
tirely new type” as the Delegate class cannot be extended like any other class,
nor can they implement an interface. “New language rules are required” to
match the expressions.

All citations come from [SUN-DLG].

5Windows Foundation Class

5 DELEGATES IN OTHER LANGUAGES 7

4.2 Advantages

Microsoft agrees with Sun about the need for the support of pluggable API’s. How-
ever, they of course don’t agree on the arguments about delegates brought forth by
Sun.

On Sun’s critics, Microsoft responds:

• Inner classes can make programs unreadable, while delegates can avoid this
and can be very readable.

• Delegates can easily be fit into existing languages and VMs. There are no new
rules needed in the Java language, neither is there any need for a completely
new type as all delegates are simply an instance of the class Delegate. The fact
that the Delegate class cannot be extended is not unique; the classes Array
and String also are non-extendible.

4.3 Evaluation

Sun is right in stating that delegates can be used to create totally unreadable and
badly programmed code. However, examples Microsoft gives show that delegates
can also be used in a well structured manner.
The fact that code can be unreadable under certain circumstances doesn’t make a
construction bad, but the ease with which the code is made unreadable does.

Delegates can be implemented both efficient and portable. There is no reason at
all why a VM6 could not properly support them. Breakage with older VMs should
not be an argument for holding back innovations.

5 Delegates in other languages

More and more languages make use of the delegate. These languages include C#
and Visual Basic .NET.

5.1 Delegates in C#

C# is a derivate language of C++. The delegate obsoletes most of the purpose of
function pointers which are, of course, all but object oriented.

A function pointer is merely a memory address of a certain (callback-)function, it
can not carry information about the interface, like the number of parameters or
the types of these parameters. Delegates are objects, which are able to carry these
informations.

Recall Listing 1 sorting an array of strings using a delegate function. Listing 6 is
the equivalent written in C#.

5.2 Delegates in Visual Basic .NET

The newest version of Visual Basic, VB.Net supports delegates. Listing 7 demon-
strates the usage of delegates in VB.Net. However, the readability of Visual Basic
is so poor, it is quite a task to follow the program flow.

6Virtual Machine

5 DELEGATES IN OTHER LANGUAGES 8

Listing 6: Example of delegate use in Microsoft C#

// Define Comparer class that extends Delegate class.

public delegate void Comparer(Object a , Object b) ;

// Create function to match Comparer delegate signature.

int stringCompare(Object a , Object b) {
String x = (String) a ;
String y = (String) b ;
return x . compare(y) ;

}

void test () {
// Create & instantiate delegate with

// defined stringCompare function.

Comparer c = new Comparer(this . stringCompare) ;
String [] stringArr = . . .

// Call sorter function with array and delegate

// which will be called by c.invoke(elem1, elem2)

// for elements in stringArr.

Sorter . sort (stringArr , c) ;

. . .
}

Listing 7: Example of delegate use in Microsoft VB.Net

Public Class DelegateDemo
’Creates a delegate object called onClick’

Public Delegate Sub onClick (ByVal messageString As String)

’Defines a delegated function clickDelegate’

Public Sub cl ickDelegate (ByVal messageString As String)
Console . WriteLine (messageString)

End Sub

’clickDel is now a delegate to clickDelegate sub’

Dim cl ickDel As onClick = AddressOf cl ickDelegate

’Call clickDel to use the delegate’

Public Sub test ()
c l ickDel (’Hi’)

End Sub

End Class

6 CONCLUSION 9

6 Conclusion

The delegate has some interesting properties but also brings along some disad-
vantages if the construction is added to a language. In practice the delegate is a
convenient construction but is less elegant in a program languange sense.

As conclusion we will assess the readability, writability and reliability factors.

6.1 Readability

In fully object oriented the delegate is a rather strange construction compared to
the rest. Mostly because it defines a subclass implicitly which has both a return
type and argument types enforced on methods that are encapsulated. It features a
more compact syntax than for example inner classes though.

6.2 Writability

Using delegates enhances expressivity and abstraction. It is very easy to construct
a method and make it passable by using the delegate. Complete functionality can
be abstracted from by a single delegate with the encapsulated method reference.

6.3 Reliability

The delegate is completely type-safe and so type-checking can be enforced. Because
also the definedness can be checked compile-time, the delegate will rule out a lot of
errors that one would normally have with function references/pointers.

REFERENCES 10

References

[CSC-VB.NET] Pramod Singh – Delegates in VB.NET http://www.

c-sharpcorner.com/vbnet/delegatesinvb.asp

[DPB] Dumky’s programming blog – The dark side of C# Delegates
http://blog.monstuff.com/archives/000037.html

[MSDN-DLG] MSDN – The Truth About Delegates
http://msdn.microsoft.com/vjsharp/productinfo/

visualj/visualj6/technical/articles/general/truth/

default.aspx

[MSDN-DLGTUT] MSDN – Delegates in Visual J++ 6.0
http://msdn.microsoft.com/library/en-us/dnjpp/html/

msdn_delegates.asp?frame=true

[MSDN-DOTNET] MSDN – .NET, an introduction to Delegates
http://msdn.microsoft.com/msdnmag/issues/01/04/net/

default.aspx

[PYTH-REF] Nikos Drakos, Ross Moore – The Python Reference Manual
http://www.python.org/doc/1.6/ref/lambda.html#lambda

[RUBYBOOK] David Thomas & Andrew Hunt – Programming Ruby
http://www.rubycentral.com/book/tut_containers.html

[SUN-DLG] The JavaTM Language Team – About Microsoft’s ”Delegates”
http://java.sun.com/docs/white/delegates.html

[WKP-DLG] Wikipedia – Delegation
http://en.wikipedia.org/wiki/Delegation

[WKP-DLGPAT] Wikipedia – The delegation pattern
http://en.wikipedia.org/wiki/Delegation_pattern

